
PII:S002D-7683(98)00096-1

f1) Pergamon
Int. J. Solid, Structures Vol. 35, Nos 34-35, pp. 4811-4843. 1998

1998 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

0020-7683/98/$··-see front matter

VOLUME AVERAGING, EFFECTIVE STRESS
RULES, AND INVERSION FOR MICROSTRUCTURAL

RESPONSE OF MULTICOMPONENT POROUS
MEDIA

JAMES G. BERRYMANt
Lawrence Livermore National Laboratory, P.O. Box 808 L-200, Livermore, CA 94551-9900,

U.S.A.

and

STEVEN R. PRIDE
Departement de Geomagnetisme et Paleomagnetisme, Institut de Physique du Globe de Paris,

4, Place Jussieu, B89, Tour 24, 75252 Paris cedex 05, France

(Received 20 May 1997; in revised form 13 October 1997)

Abstract-A general volume-averaging technique is used to derive equations satisfied by the average
scalar stresses and strains in multicomponent porous rock. The resulting equations are combined
with general thought experiments to produce the effective-stress rules that determine the volumetric
changes of the rock induced by changes in the confining and fluid pressures. The composite porous
material specifically treated is an isotropic mixture of two Gassmann materials. Two distinct cases
are considered depending on whether the grains at the interface between the Gassmann materials
are either (I) welded together (no "cracks" can open between the two constituents) or (2) nonwelded
(cracks can open). The effective-stress laws determine not only the overall volumetric changes of a
given sample (i.e., changes in sample volume, total pore volume, and fluid-mass content), but
determine as well the changes within each Gassmann component individually. This additional level
of detail achieved in the analysis is referred to as inversion for the microstructural response. In the
nonwelded case, the effective-stress law relating the variation of crack porosity with macroscopic
changes in confining and fluid stress can be used to determine optimum strategies for increasing
fracture/crack porosity with applications to reservoir production analysis, (Q 1998 Elsevier Science
Ltd. All rights reserved.

I. INTRODUCTION

Real poroelastic media occurring in nature tend to be very complex materials such as rocks
containing water, oil, and/or gas. These materials are inherently heterogeneous composites
simply because the presence of a solid/fluid mixture, and the random placement of the
fluids in the pore space. However, they will often be multicomponent composites even if
the saturating fluid is uniform, because the solid constituents themselves may vary from
quartz to shale to clay, etc. Whereas in elastic composites the equations of elasticity are
well accepted and the only issue to be addressed in research on such composites is the
effective elastic constants themselves, the situation is more complicated in such mixed
media. Because these physical systems exhibit a richer variety of behavior, different "effec­
tive" equations must be used to describe their reactions to external stimuli. Thus, some
fraction of the effort in the field of poroelasticity continues to be devoted to derivation and
justification of the equations of motion themselves. This paper addresses this issue from
the point of view of multiple solid component poroelastic media.

Recent work by Pride et al. (1992) using volume averaging to derive the form of the
equations of motion for sound traveling through a fluid-saturated porous medium (Biot,
1962) has been restricted by the assumption that the solid part of the solid/fluid composite
was microhomogeneous, i.e., composed of only a single type of solid constituent. We call
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such single-solid porous media "Gassmann materials" in honor of the famous paper by
Gassmann (1951), in which he first derived some of the basic and best known results about
such poroeiastic media. In the present paper, we show how to generalize the results of Pride
et al. (1992) from Gassmann materials to multicomponent and solid frames and then make
use of these results to establish general effective-stress rules for the behavior of such media.
Effective-stress rules (Nur and Byerlee, 1971 ; Berryman, 1992, 1993, 1997) determine the
relative importance of confining stress and internal pore-fluid pressure on the response of
rock to changes in the state ofstress. By eliminating the restriction to single solid component
media, we include models that are more representative of real porous materials and rocks.

Some of the earlier approaches to volume averaging include those of Hill (1963),
Slattery (1967), Whittaker (1969), Burridge and Keller (1981), and Mei and Auriault
(1989)~amongmany others. The approach of Pride et al. (1992), which is also the approach
taken here, has much in common with the methods of Slattery and Whittaker. However,
these two authors were studying fluid flow through a rigid solid matrix, whereas the present
approach necessarily includes the effects of solid deformation. Hill (1963), Burridge and
Keller (1981), Whittaker (1986), and Mei and Auriault (1989) have also treated deformable
media. One of the major differences between the present approach and these related methods
is that we make no assumption of periodicity in the medium and we make relatively few
approximations, letting the volume averaging do most of the work. The cell problems that
arise in homogenization methods based on periodicity assumptions are replaced here by
thought experiments and/or real laboratory experiments to evaluate the unknown
coefficients that necessarily arise in all methods.

There has also been some recent and related work on double-porosity, dual-per­
meability media by Berryman and Wang (1995), Tuncay and Corapcioglu (1995), and
Wang and Berryman (1996). Tuncay and Corapcioglu (1995) use a volume averaging
approach that is basically the same as that of Pride et al. (1992) to analyze the situation in
which two distinct types of porosity are present in the system: one due to fractures or
cracks and the other due to matrix porosity. Berryman and Wang (1995) and Wang and
Berryman (1996) obtain virtually identical results by analyzing the constitutive equations
and comparing them with quantities measurable in the laboratory. We will find here that
combinations of volume averaging and constitutive equations analysis are required to solve
the complex problems we address.

It will prove important to make connection with the definitions of Brown and Korringa
(1975), which are themselves based on the well-known jacKeted and unjacketed thought
experiments of Biot and Willis (1957). Generally similar ideas have also been presented by
Rice (1975) and Rice and Cleary (1976), but~for our present purposes~we prefer the
more detailed discussion presented by Brown and Korringa. If the total volume of the
porous sample is Vand the pore volume contained in that sample is V</> (where the porosity
is given by ¢ = V</>/V), then Brown and Korringa (1975) define constants so that

(1)

and

(2)

The independent variables in these formulas are the changes in differential pressure 0Pd and
pore-fluid pressure OPf. The differential pressure is the difference between the external
(confining) pressure oPe and the fluid pressure, so 0Pd = oPe - OPf. The coefficients are written
in terms of the frame (or jacketed) bulk modulus K*, the solid grain (or unjacketed) bulk
modulus K" and the pore (or unjacketed pore) bulk modulus K</>. The remaining modulus
K p can be shown to be related to K*, K" and the porosity ¢ by the formula
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(3)

assuming only than an energy density for the bulk deformations exists. Measurements of
Kp have been made by Zimmerman et al. (1986) for some rocks. One other important factor
is that, if the porous solid frame is composed of a single constituent (microhomogeneity),
then-and only then-K<t> = Ks = Km , where Km is the bulk modulus of the single type of
mineral grain present. These definitions and results were used extensively by Berryman
(1992) to establish general effective-stress rules for multicomponent rock.

The next section of the paper presents a brief review of the main results of Pride et al.
(1992), and relates those results to the definitions of Brown and Korringa (1975). Sub­
sequent sections of the paper describe our results on rock models with multiple solid
constituents. Section 3 introduces models with two constituents and addresses both welded
and nonwelded contacts. Section 4 shows how to write the general effective stress for
materials with welded contact. Section 5 summarizes the main conclusions. A series of
appendices expands on some of the details of the analysis left out of the main text.

For simplicity and to allow us to focus on the main ideas, the analysis in the paper is
restricted to statistically isotropic composite poroelastic media containing isotropic solid
constituents.

2. REVIEW OF SINGLE SOLID COMPONENT MODEL AND RESULTS

The issue addressed by Pride et al. (1992) concerns the method by which one arrives
at the equations of motion for sound traveling through a solid/fluid mixture when it is
assumed that the solid is cohesive and porous, but contains only a single type of mineral.
In the present section and throughout the paper, the fluid is homogeneous and completely
fills the pores.

2.1. The averaging theorem
The averaging theorem to be used is due to Slattery (1967) and is based on the idea

that volume averages of derivatives are closely related to derivatives of volume averages,
but care must be taken to account properly for behavior of the averaged quantities at points
or surfaces where abrupt changes occur. In particular, when the quantity to be averaged
exists on one side of an interface and does not exist on the other side, an interior interface
term will contribute to the volume average of the derivative, but not to the derivative of
the volume average.

Suppose that Q is a quantity to be averaged; Q can be a scalar, vector, or tensor. For
convenience of the discussion, we will assume that the averaging volume is a finite sphere
centered at position x, although other choices are also possible. We label this volume n(x)
and the surface of this volume is an. The exterior surface has two parts an = aEo + aEQ,

with aEo being the part where the quantity of interest Q vanishes identically and aEQ being
the part where Q #- O. In addition to the exterior surface, there is also an interior surface
where Q changes abruptly to zero (or is simply undefined, such as the value of the solid
displacement in the interior of a pore) and we label this surface aIQ , for interior. The
exterior surface together with this interior surface is the total bounding surface for the
region we will label nQ, i.e., the region wherein the quantity to be averaged Q is nonzero.
With these definitions, it is straightforward to show that

(4)

where dS is the infinitesimal of the surface volume element, and DQ is the unit outward
normal vector from the region containing nonzero Q. The main point of (4) is just that
aEQ+aIQ is the entire bounding surface of Q in the volume n. As an example of the meaning
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of this result, consider Q to be a vector quantity, take the trace of (4), and the result is just
a statement of the well-known divergence theorem for vectors.

The second result is that

(5)

The resulting Frechet derivative (5) follows from the fact that the volumes Q(x) and
Q(x + l5x) contain virtually the same internal surface and so these do not contribute to the
gradient, only the surface average of Q over EQ matters (for example, the hatched areas in
Fig. 1).

Combining these results finally gives

(6)

Dividing by the fixed initial volume V = In d 3X contained in Q and defining the average as
<Q) = V-I InQd 3x, then gives the averaging theorem:

(7)

One further definition is required to understand the notation to be used for the single
solid analysis. The average <Q) is an average over the whole volume of Q (i.e. including

Fig. I. Schematic illustration for averaging for solid material B in an inhomogeneous fluid/solid
mixture containing solids of type-A and B and also containing saturating fluid F. When the averaging
sphere (circle with lighter line) is displaced a very small distance, it produces contributions to the
Frechet derivative of physical quantities associated by B material along the external B interfaces
(labeled by oEB). The internal interfaces (aI4 , aIF) do not contribute because, as the sphere dis­
placement becomes infinitesimally small, the interfaces contained in both the original sphere and in
the displaced sphere are virtually identical. For the volume averaging step alone, no restrictions to
Gassmann porous media needs to be made in the analysis. That restriction arises in the thought

experiments required to close the system of equations.
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the regions where Q is zero by definition), while we will also want to consider the partial
average Q, which are related to the full volume average by

(8)

In eqn (8), DQ is the volume fraction of Q in which Q is nonzero.
Note that, although we generally neglect to show this dependence, all the average

quantities are in fact functions of the particular choice of averaging volume Q(x). In
principle, Q(x) can be as large as the sample being studied, or as small as desired. The
legitimacy of the averaging theorem does not depend on the size of the averaging volume.
However, some intermediate choice will generally be made for Q(x). Too small of an
averaging volume implies rapid fluctuations in the quantities of interest (like the fluid and
solid dilatations), while a very large averaging volume implies all the coefficients in the
equations are universal constants and therefore prevents us from studying the effect oflocal
inhomogeneities, which is the main purpose of this paper. Also, for a wave problem, when
the averaging volume becomes as large as the wavelengths, the oscillatory changes in
particle displacement will tend to average to zero. Further discussion of the averaging is
presented by Pride and Berryman (1998).

2.2. Quasistatic constitutive relations for isotropic materials
Pride et at. (1992) perform bulk averages on the microscopic stress/strain relations for

a fluid/solid mixture; then, using the averaging theorem, they obtain general constitutive
relations for the solid and fluid stress tensors. Taking the trace of these equations gives the
following results. The constitutive relations for dilatations and porosity are

and

bps _ b¢
--='\7'u---

K s s l-¢

bPr _ b¢
--='\7'u+-K r r ¢'

(9)

(10)

where the partial averages iisand iirare related to the full volume averages by (us) = (1- ¢)iis
and (ur) = ¢iir. One assumption implicit in (9) and (10) is that ¢ changes much more
slowly in space than the displacement variables iis and iir. This assumption allows us to
remove the factors involving the porosity from the divergence terms. Although this assump­
tion is nonessential [Pride and Berryman (1998) derive the general poroelasticity laws
without using this assumption], it is expedient for our present purposes.

It is important now to understand the interpretations of all the symbols appearing in
these two equations [Pride and Berryman (1998) derive the exact interpretations]. First, the
variable bpr is just the change in the average fluid pressure throughout the fluid phase. The
change in average solid pressure bps is related to the macroscopic confining pressure change
bpc by the averaging relation bpc = (I - ¢ )bps + ¢bpr. Thus, bps is just the average change in
solid pressure experienced by the solid. We view bpc and bpr as the pressures we can control
(i.e., the independent variables), while the derived quantity (and therefore dependent
variable) bps is the (solid volume) weighted average of the confining pressure after sub­
tracting that part of the confining pressure supported by the fluid pressure. The change in
porosity is given by b¢. The porosity change occurs naturally in these expressions because
(see Appendix A)

1 f ~ 1 f ~b¢ = V " Dr' Ur dS = - V ' Os' Us dS.
04 o~

(11)

The divergence of the average solid displacement '\7' iis is properly interpreted as the
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dilatation of the porous solid frame (not the dilatation of the solid alone). This interpret­
ation is not obvious, but it follows from the fact that the term arises from the external
surface integral [cf eqn (5)]

I f AV'<Us>= V Ds'usdS,
2Es

(12)

which is exactly the surface integral needed to define the overall behavior of the porous
solid frame. Thus, in terms of the definitions of Brown and Korringa (1975),

(13)

This interpretation is the same one obtained by Pride et al. (1992) using a combination of
the standard thought experiments (jacketed and unjacketed) of Biot and Willis (1957). To
check that this is so, we can easily show that

(14)

using either approach when a single constituent is present so that the Brown and Korringa
unjacketed constants satisfy Ks = Kq" as has been assumed for a single solid constituent.
Note that (14) can also be written as

(15)

emphasizing that porosity is constant if differential pressure is constant-a general result
for microhomogeneous porous frames, but not true otherwise. Thus, the left-hand side of
(9) is just the solid dilatation bVsj V" while the two terms on the right-hand are
bVjV+b(1-cjJ)j(1-cjJ).

Similarly, it is important to understand that the expression V· fir is not just a fluid
dilatation, but also includes the effects of fluid displacement into and out of the volume. In
fact, this is already apparent from (10) since the strict fluid dilatation satisfies

(16)

yet (10) contains an additional term related to changes in porosity. The correct physical
interpretation of V. fir is provided by its relation to the increment of fluid content

(17)

where' is defined as

(18)

and has the interpretation (Biot, 1973; Berryman and Thigpen, 1985) of the relative change
in fluid mass per unit volume of initial fluid mass. Note that (16) and (18) are in agreement
with (17) if the averaging equation (10) is also satisfied.
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The equations (9), (10), and (13) are sufficient to arrive at the standard form of the
equations relating to e and (to the macroscopic pressures bpc and bpr for a single constituent
porous medium given by

( e) ( l/K*
-( - l/Ks-l/K*

l/Ks -l/K* ) (-bPc)
1/K*+cP/Kr-(1 +cP)/Ks -bpr'

(19)

These equations are completely consistent with the results of Pride et al. (1992) as can be
demonstrated by substituting the definitions given above into the formulas (48) and (49)
of Pride et al. (1992), and then doing a straightforward (though somewhat tedious) 2 x 2
matrix inversion.

3. MODELS WITH TWO SOLID COMPONENTS

We now consider that the porous sample is a mixture of two different porous materials
denoted by A and B. (See Fig. 1.) Both of these A and B components are taken as Gassmann
materials and are assumed to occupy well defined (distinct) volumes within the sample so
that VA + VB = V where V is the total sample (or averaging) volume. The A and B com­
ponents are sufficiently uniform and of sufficient extent that they can be thought of as
homogeneous porous continua. The volume fractions VA = VA/V and VB = VB/V are
assumed to be known as are the standard poroelastic properties of the two Gassmann
materials: these are the porosities (cPA' cPB), the drained bulk moduli (K~, K~), and the bulk
moduli of the A and Bminerals (KA , KB). A single homogeneous fluid is assumed to saturate
both the A and B components and has a known bulk modulus Kr. Finally, the drained bulk
modulus of the total composite sample K* is assumed to be known as well.

If increments in confining pressure and fluid pressure are applied to the sample as a
whole, the central goal in what follows is to define the various volumetric responses of the
sample in terms of the known material properties defined above. For the sample as a whole,
these responses are determined by three Brown and Korringa moduli (K*, K" and K<jJ)
where K* is known but Ks and K<jJ must be determined. When the sample is a mixture of
two isotropic Gassmann components, Berryman and Milton (1991, 1992) have introduced
uniform strain thought experiments that allow Kg and K<jJ to be solved for exactly. We show
here that the volumetric changes of the individual A and B components can also be exactly
determined using the same known properties used to define the overall response. This is
what we mean by "inversion for the microstructural response" and is something that has
not previously been addressed in the literature.

In fact, we go further and distinguish two cases: (1) the interface between the A and
B Gassmann components within the sample is welded and (2) the interface is either only
partially welded or nonwelded. The key distinction between the two cases is that welded
contact between porous constituents implies that no cracks/fractures can open up between
these constituents due to applied temperature or stress, while cracks/fractures are allowed
with only partially welded contact. Welded contact may be somewhat easier to analyze, but
nonwelded contact is expected to be a better model of rocks (Walsh, 1965). In order to
obtain the key results in the case of nonwelded contact, the response due to temperature
changes will have to be considered.

As a means of simplifying the algebra in the following analysis, we introduce (see
Appendix A for the definition and a discussion) new quantities that we call uAand fiB, the
divergences of which are just the dilatations of the corresponding Gassmann components:
V'uA = bVA/VA and V'uB= bVB/VB' This step is made at this point because it helps to
avoid introducing various terms that would ultimately cancel in the final formulas.

3.1. Fully welded contact
For two porous components A and B in welded contact, the volume fractions of the

components vA, VB satisfy
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(20)

while the overall porosity is given by

(21)

The fractions of the total volume occupied by the solid components are DA = vAl-ePA)
and DB(1-ePB)' respectively. The solid components in A and B are individually pure, so
that each porous constituent may be thought of as a microhomogeneous (or Gassmann)
material.

3.1.1. Averaging equations. Volume averaging for the three components (two solid and
one fluid) yields

(22)

(23)

and

(24)

These three equations should be compared to the single-component results (9) and (10).
The pressure increment JpA represents the average change in solid pressure throughout the
grains of the porous material A (with an analogous definition for bpB)' To provide some
insight, notice that the left-hand side of (22) is easily seen to be J[VA(1- ePA)]/ VA(1- ePA)
(which is the relative change in type-A solid volume), while the right-hand side is
bVAIVA- JePA/(1-ePA)'

3.1.2. Other relationships. It is useful to think of eqns (22) and (23) as equations for
the changes in the constituent porosities bePA and JePB' To relate these values to the overall
response, we need another pair of equations. First, note that from (21)

(25)

so we need an expression for the change in VA' For welded contact, we obtain such an
expression by noting that by definition

J 1 _ VAl +V'UA)
vA+ t A - VA1+V'uA)+VB(l+V'uB)'

which upon expansion and neglect of second order terms yields

(26)

(27)

and furthermore for welded contact bVB= -bvA' Note that, if A and B expand or contract
at the same rate so that V' uA = V' UB, then bvA = 0 as expected.

We also want to view the combined solid volume V, = VA1-ePA)+ VB(1-ePB) as a
whole in order to recover Biot's (or Brown and Korringa's) macroscopic equations for the
inhomogeneous material. Then, it is important to recognize that the solid dilatations must
satisfy
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and, similarly, the solid pressures must satisfy

(29)

Relation (28) may be easily derived by considering the denominator of the right-hand side
of (26), whereas (29) is just a statement of force conservation across a material boundary.
Alternatively stated, both (28) and (29) are direct consequences of the definitions of the
volume averages.

3.1.3. Definitions ofmicrostructural coefficients. Now the issue to be addressed is how
the volume, porosity, and average solid pressure of the individual A and B porous materials
change when increments in confining and fluid pressure are applied to the sample as a
whole. We assume the system is isotropic and linear, so all variables can be assumed to
depend linearly on small changes in the applied stresses. Thus, the changes of the average
solid pressure within the A and B components are taken to be linear functions of the form

(30)

and

(31 )

Due to the effect ofmicrostructure, these average solid pressures will differ, in general, from
the average solid pressure throughout the sample as a whole. Expressing QA, QB, }'Aand}'B
in terms of the Brown and Korringa moduli and other known properties is really the key
to this analysis because it will be possible to express the volumetric response of the A and
B components entirely in terms of them and the known properties of the Gassmann
materials.

The A and B dilatations are defined by linear response laws of the form

(32)

and

(33)

while the A and B porosity changes are defined by

(34)

and

(35)

Such linear response is always expected (Hill, 1963; Berryman and Berge, 1996), but not
always possible to determine explicitly in inhomogeneous systems. Here SA and SB, for
example, are constant compliances, while 1'lA and FiB are effective stress coefficients-anal­
ogous to the Biot-Willis parameter but differing from it in general because of the effects of
microgeometry in the composite; i.e., because the average pressure increments throughout
the A and B components will be different, in general, from the confining pressure bpc applied
to the sample as a whole. We will call constants such as SA, SB, FiA, and aB, and the analogous
quantities for pressure and porosity changes the "microstructural response coefficients".
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There are 12 such microstructural coefficients to be determined (QA, QB, YA, YB, SA, SB,
iXA, iXB, WA, WB' XA, XB)' Our strategy in what follows is to: (1) define the A and B micro­
pressure coefficients in terms of the Brown and Korringa moduli (K*, K" K¢) and other
known constants by combining the volume-averaging results with the overall response laws
of Brown and Korringa; (2) introduce the known micro-pressure laws into the A and B
Gassmann laws in order to define the coefficients in the dilatation and porosity response
laws of the A and B components; and, lastly (3) define the moduli Ks and K¢ by means of
the Berryman and Milton (1991) thought experiment.

3.1.4. General relations for microstructural response. We now use the averaging equa­
tions to express the micro-pressure coefficients in terms of the Brown and Korringa moduli.
Equation (29) shows that

(36)

This equality is completely general for arbitrary values of bpc and bpr, which implies that
the coefficients ofeach pressure change must satisfy the equality separately (first set bpr = 0,
then set bpc = 0). The resulting equations are

(37)

and

(38)

Equations (37) and (38) give us two equations for these four unknown coefficients.
To obtain more equations relating the coefficients to known quantities, we consider

the volume averaging eqns (22) and (23). Multiplying (22) by VA and (23) by VB' adding,
and substituting (25) and (28), we have the equation relating the constituent changes in
average pressure to the overall solid dilatation

- bpA - bPs (1 Fi,)V - >.Fi,-VA K
A

-VB K
B

= -'/-' 'Us-U'/-" (39)

The right hand side of (39) can be written in terms of macroscopic coefficients by recalling
that the definitions of Brown and Korringa show the porosity change is of the form b(V¢/V),
which is

(40)

Thus, using (13) and (40), we find that

(41)

This equation leads to two more equations for the Qs and the ys:

(42)

and
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Solving the pair of eqns (37) and (42) for the Qs gives

(44)

and solving the pair of eqns (38) and (43) for the '}'S gives

(45)

showing that

(46)

with a similar expression for '}'B' Since K¢ #- K, in general, we see that both ys differ somewhat
from ¢. Thus, the average pressure response of the solid components due to changes in
external pressure has been completely expressed in terms of the Brown and Korringa
moduli. (We will find the same result holds as well for nonwelded contact.) These are the
key results that when combined with the Gassmann laws of the next section allow all
microstructural coefficients to be expressed in terms of K*, Ks and K¢ and known properties
of the Gassmann materials.

Although not essential to our general program here, the averaging equations do imply
certain other relations involving the microstructure coefficients. For example, (28) shows
that for the sample as a whole

(47)

where \I. = l-K*/Ks is the Biot-Willis parameter. From (47) it follows that, since fJpc and
fJpr are independent variables,

(48)

and

(49)

Equations (48) and (49) give two equations in these four unknowns.
Now to get relations involving the porosity changes, we consider eqns (22) and (23).

Substituting from the definitions (32) and (35), we obtain

(50)

and
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(51)

with similar expressions for WB and "lB'

Not all of these results can be independent because equation (39) was also obtained
by taking a linear combination of (22) and (23). Indeed, substituting (50) and (51) into the
porosity eqn (25) just reproduces (48) and (49). Considering (48) and (49), we have one
system of two equations in four unknowns. Thus, the implications of the averaging equa­
tions alone has brought us to the point where just two more equations will allow all the
microstructural coefficients to be expressed in terms of K*, K" and K</>.

3.1.5. Gassmann laws for components A and B. The central assumptions made about
materials A and B to this point have been that they respond linearly and isotropically to
the applied pressure increments. Furthermore, in the averaging eqns (22)-(23), we have
assumed that the minerals comprising the frames of materials A and B are homogeneous.
Thus, even before introducing the Gassmann laws here, the analysis has been restricted to
a treatment requiring the A and B components to be isotropic monomineral porous
materials (i.e., Gassmann materials).

Pride and Berryman (1998) have shown that the volumetric response of an isotropic
(but otherwise arbitrary) porous material does not depend on the details of how stress is
applied to the surface of the sample. The volumetric response depends only on the average
fluid and solid pressures generated throughout the sample. Since our A and B Gassmann
components are each isotropic, this says that even though they are entangled within the
sample and have nonuniform stress fields distributed over their surfaces in general, their
"isolated state" compressibility laws still hold so long as we use the micro-confining
pressures bpcA and bpcB defined as the average total pressures throughout the A and B
regions, respectively. Such micro-confining pressures are thus given by

(52)

(53)

where the microstructural pressure law (30) has been used. Analagous expressions hold for
bpcB'

To close the system of microstructural coefficients, the Gassmann compressibility laws
for the A and B components are now given. Instead of working with these laws in the form
of (19), it is more convenient to write them as

(54)

(55)

(56)

(57)

where CX A is again the Biot-Willis constant CX A = 1- K~/KA . Analogous laws hold for the B
component.

We now simply read off the correspondence between the microstructural laws and the
Gassmann laws (55) and (57) to find
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(58)

(59)

(60)

(61)

with identical expressions for the B coefficients. Since the Qs and ys have already been
obtained, we now have all microstructural coefficients uniquely (and exactly) expressed in
terms of K*, K" and K¢.

Note that eqns (48)-(51) provide alternative expressions for some of these coefficients.
In particular, it is easy to show that

(62)

(63)

with analogous expressions for the B coefficients (found always by interchanging subscripts
A - B). We now proceed to the final step which is to obtain Ks and K¢ in terms of known
quantities.

3.1.6. Uniform expansion/contraction thought experiment. The well-known jacketed
experiment of Biot and Willis (1957) has been implicitly used to define both the overall
frame modulus K* and the frame moduli K~ and K~ of the two Gassmann components.
The unjacketed thought experiment of Biot and Willis (in which pore pressure and confining
pressure increments are the same) has also been implicitly used to obtain the Gassmann
laws for bcPA and bcPB' However, the unjacketed experiment is not useful in determining K¢
and K s when the solid framework of grains consists of two (or more) distinct mineral types.
Fortunately, Berryman and Milton (1991) have presented a different thought experiment
for two-component media that allows both Ks and K¢ to be determined exactly. [Norris
(1992) has confirmed and extended these results using an analogy between the equations
of poroelasticity and thermoelasticity.] Due to the terseness with which Berryman and
Milton stated their thought experiment, the key ideas are reviewed here.

Our A and B components can be viewed as porous continua subject to the laws of
poroelasticity. Consider a body that is a composite of different porous continua and that
is immersed in a reservoir of uniform confining pressure. After a sufficient time, the fluid
pressure throughout the body is a constant. Both the equilibrium laws of poroelasticity and
the boundary conditions on the body's surface can be satisfied by a stress distribution in
which the confining stress at all points of the composite is constant and given by the pressure
of the reservoir. However, such a uniform stress field will only be the solution of the actual
poroelasticity problem if the corresponding strain compatibility equations are satisfied
along with the welded interface conditions. With uniform stress, the strain within each
component of the body is also uniform and thus the compatibility equations are satisfied.
However, because the strain in different components will, in general, be different, there is
no way to keep the interfaces welded except for very special geometric arrangements of
the components (e.g., concentric layers). Thus, for an arbitrary distribution of different
components, the total stress field will not, in general, be uniform throughout the composite
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body even though such uniform stress always satisfies both the equilibrium law and the
external boundary conditions.

What Berryman and Milton (1991) noticed is that if there are only two isotropic
components (A and B), one can always select the confining pressure of the reservoir (with
fluid pressure fixed) such that the total strain of the two components is equal; i.e., such
that JVA/VA = JVB/VB. One possible way to achieve this macroscopic condition is if the
poroelastic strain at each and every point throughout the A and B continua is constant.
Such a uniform strain field guarantees that the welded interface conditions are satisfied
and, in so doing, corresponds to a total stress field that is also uniform. Since these uniform
strain and stress fields satisfy all conditions for uniqueness of a solution, they must be the
actual fields throughout the body. Thus, for arbitrary distributions of the A and B
components, one finds that when (and only when) V' UA = V' uB, then JpcA = JPcB = Jpc
exactly. Furthermore, under these conditions, the poroelastic stress and strain throughout
the body are constant. These are the key results of the Berryman and Milton thought
experiment.

The special confining pressure at which the strain becomes everywhere uniform is
denoted here as Jpc = eJpr. An expression for e is obtained by equating the Gassmann laws
for V' uA and V' UB when JpCA = JpcB = Jpc to give

rxA/K~ - rxB/Kt
() = l/K~-I/Kt .

(64)

The constant Ks (or, equivalently, the Biot-Willis constant rx = l-K*/Ks) is determined
from the requirement that V' iis = V' uA (= V' UB) when Jpc = ()oPr so that

e=rxA/K~ -rx/K* (= rxB/Kt- rx/K*).
l/K~-l/K* l/Kt-l/K*

(65)

The combination of (64) and (65) may appear to be too many equations for the same thing,
but in fact any two of the three implies the third, so the count is correct.

The constant K¢ is determined by noting that bvA = 0 during uniform strain so that
(25) becomes

(66)

(67)

where the Gassmann law (60) was used for 154>Aand 154>Bwith bpcA = bpcB = ebpr. A second
expression for 154> is obtained by introducing the uniform strain condition Jpc = eJpr into
(40) to give

(68)

These two expressions for 154> combine to give an exact expression for K¢ entirely in terms
of known quantities.

Finally, the uniform-strain conditions provide alternative expressions for the SA and
SB microstructural coefficients

(69)

Substituting (69) into (48) gives
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which provides an additional equality (not needed for closure) relating the values of the
microstructural effective stress coefficients tiA and tiB• (See also Appendices B, C and D.)

3.1.7. Summary ofwelded contact results. For the reader's convenience, the key results
of the above analysis are now summarized. The effective stress-laws governing the overall
response of a multicomponent porous rock are (Brown and Korringa, 1975)

where the effective-stress coefficients IX and Xare defined by

IX = l-K*/K,

x= 1- (l-<jJ)/K*-I/Ks

(71)

(72)

(73)

(74)

For the specific case where the rock is an isotropic mixture of two Gassmann porous
materials in welded contact, the Brown and Korringa coefficient K, is expressed (Berryman
and Milton, 1991)

(75)

while the coefficient K¢ can be written (Berryman and Milton, 1991)

In both of these expressions, the coefficient

IXA/K~-IXB/K~

8= I/K~-I/K~

(76)

(77)

defines the pressure ratio bpc = 8bpr that results in uniform strain throughout the A and B
porous continua.

The microstructural response laws of the Gassmann components are

(78)

(79)

(80)

where the coefficients are
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llKB-IlKs
(81)VAQA = lIKB-l/KA

rA =
¢/KB-¢/Kq,

(82)
lIKB-IIKs

QA
(83)SA = K*A

ri -¢_ + A A (84)riA = rA QA

WA =
(riA -¢A)QA

(85)
K~

l-¢A
(86)XA=rA+~'

Similar expressions for the B component response are obtained by replacing the subscript
A with B throughout these expressions. Alternative expressions for these coefficients are
presented in Appendices Band C as well as in the previous sections.

To summarize the approach, we have: (1) averaged the fluid and solid response
throughout the two component body; (2) combined the averaging equations with the
Brown and Korringa laws to obtain the micropressure laws for bPA and bps; (3) introduced
the micropressure laws into the A and B Gassmann laws in order to identify the other
microcoefficients; and (4) used the Berryman and Milton (1991) uniform strain thought
experiment in order to find the moduli Ksand Kq,.

3.2. Partially welded or nonwelded contact
For two porous components A and B in partially welded or nonwelded contact, the

volume fractions of the components vA, VB satisfy

(87)

where Vc is the crack or fracture volume fraction which may possibly be zero prior to the
application of a change in confining or pore pressure. The porosity is now given by

(88)

where ¢ A' ¢ B are again, respectively, the porosities of the porous constituents A and B, but
now a third crack (or fracture) phase is present, and being pure void it therefore contributes
its entire volume fraction Vc to the porosity.

In order to close the system of equations for a composite porous medium including
cracks, we need three applied fields [this fact is clear from the earlier work of Berryman
and Milton (1992)] and therefore must generalize the equations of Brown and Korringa
(1975) to include the effects of a temperature field. The resulting equations are:

and

_ bV = bpct + bpr -f3*bT
V K* Ks '

(89)

(90)
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- b~r = i: -PrbT. (91)

The new coefficients are the volume thermal expansions P*, P¢' and Pr for the overall
composite volume, the pore volume, and the pore fluid, respectively, The change in tem­
perature (assumed uniform throughout the solid and the fluid) is bT. The constant P¢ has
also been introduced previously by McTigue (1986),

A similar set of equations is valid for each porous constituent with the exception that
the unjacketed bulk moduli (Kg = K¢ = Km) are equal for Gassmann materials, as are the
overall volume and pore volume thermal expansions (P* = P¢ = Pm) [and, of course, the
differential pressures must be expressed in terms of the micro-confining pressures (e,g.,
bpCA -bpr) when considering the Gassmann material embedded within the A-B composite],
Thus, each Gassmann material has only one thermal expansion parameter associated with
it, labeled, respectively, PA and PB'

We assume that PA' PB, and P* are all known from experiments. We will find that in
order to close the system of coefficients, either P¢ or K¢ must also be measured. With
external stress constant, if the increment in fluid content (p due to a temperature deviation
bTis measured, then P¢ is given as

(92)

For example, if a jacketed sample with a tube piercing the jacket is immersed in a tem­
perature reservoir, P¢ can be measured by monitoring the fluid volume changes in the tube,
If the tube is made of material with a coefficient of thermal expansion that is dramatically
lower than the sample, this measurement may be easier to make than the equivalent
measurement of K¢. In what follows, P¢ will be considered as known a priori and K¢ as
unknown.

3.2.1. Volume averaging with temperature changes. The volume averaging results for
the constituents are easily generalized from (22)-(24) to

(93)

(94)

and

(95)

The meanings of all the constants are the same as in (22)-(24), but the thermal expansion
terms have been added to the left-hand side.

We see that the basic averaging equations for partially welded or nonwelded contact
are almost the same as (22)-(24) for welded contact, but now temperature changes are
included and the interpretation of some terms is a little different. The porous solid volumes
VA and VB do not complete the whole averaging volume V, so bc/J may now include some
void space (due to cracks or fractures) outside of these volumes but still inside V. Also, we
will find that the average pressure changes (bPA and bPB) are now functions of temperature
change as well as being functions of both confining and fluid pressure changes.
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3.2.2. Other relations. Equations (93)-(95) do not explicitly show tie/>e because it is the
misfit porosity and, therefore, defined by tie/>e = tie/> - tie/> A - tie/> B' To see what this quantity
must be, consider the general expressions for the change in volume fractions:

(96)

(97)

and

(98)

The resulting formulas for the changes in the porosities (neglecting terms higher than first
order are)

(99)

(100)

and

(101)

satisfying the constraint for volume fractions that tivA + tivB+ tive = O.
Addition of a temperature field does not change the pressure relation (29), but the

overall dilatation is now

_ _ _ tiVeV·u =V V'U +vV·u +~-s A A B B V'

including the added volume introduced by the presence of cracks.

(102)

3.2.3. Definitions ofmicrostructural coefficients. The micro-pressure laws (30) and (31)
must be changed when a temperature field is added because local average pressures are
dependent on temperature. Thus, (30) becomes

(103)

with a similar expression for the B material. We will see that the Qs and ys have exactly the
same algebraic definitions as in the welded case.

In the presence of temperature change, the expressions for response of the dilatations
(32)-(33) become

(104)

with a similar relation for material B. We must also add a new relation for the crack
dilatation



Volume averaging, effective stress rules, and inversion for microstructural response 4829

Cracks can be opened or closed by either pressure or temperature changes, but we assumed
that welded contacts prevented this from happening in Section 3,1,

Modified equations for the changes in the porosities are

(106)

with a similar relation for B. Again, we must add a new law for the cracks

(107)

This completes the definitions of the microstructural coefficients.
There are 24 coefficients for partially welded or nonwelded contact, compared to 12

for welded contact. Eight of these coefficients are new thermal expansion coefficients, and
the other four new ones are related to pressure dependence of the crack phase. The overall
strategy used to find these coefficients will be similar to that in the welded case. We will:
(1) relate the averaging equations to the temperature-generalized Brown and Korringa
laws; (2) introduce the micropressure laws into the A and B Gassmann laws; and (3) use
the Berryman and Milton (1992) thought experiment (involving the temperature field this
time). It will be possible to express all coefficients exactly in terms of K*, f3*, f3¢ and the
same known properties of the A and B Gassmann materials used in the welded case.

3.2.4. General relations for microstructural response. Now we find from (102) that

(108)

(109)

and

(110)

All three equations follow from the direct generalization of eqn (47). These equations are
what allow the crack coefficients Se, lie, and ~e to be determined.

They also allow us to eliminate the coefficients in (107), by first equating (101)-(107)
and then using (108)-(110) to simplify the results to

and

DC
We = Se- K*' (111)

(112)

(113)

These three equations are what allow We, Xc and Ke to be determined.
The addition of the temperature field does not change (29) or (36) and therefore does

not change either (37) or (38), with the exception that VA+VB ~ 1 now. Thus, the first two
equations for the Qs and }'S do not change for nonwelded contact. The temperature
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dependence on the right-hand side of (29) must average to zero, since the applied pressures
are independent variables, so

(114)

Equation (41) changes to

(115)

[some algebra was needed using (99)-(102) to verify that the right-hand side is correct]
where now the porosity change is given by

(116)

It follows that there is no change in eqns (42) and (43) for the Qs and ys, but that we now
have a condition for the micro-pressure temperature coefficients

(117)

The effects of the crack volume (and in fact of all the porosity) have cancelled on the right­
hand side of (115), which is why there is no explicit C dependence in either (115) or (117).
Solving (114) and (117) for the es gives

(118)

(119)

Thus, just as in the welded case, we have succeeded in expressing all the micropressure
coefficients in terms of the macroscopic moduli and other known properties.

Although not central to our program, we can also make the following observations at
this point. Considering the Qs and ys as known, we can return to (93) and (94) to determine
the Ws and x,s. Substituting (104) and (106) (along with their equivalent B expressions)
into (93) and (94) and equating coefficients produces exactly the same eqns (50)-(51)
relating the Ws and x,s to the Ss and :XS and known quantities. The expressions relating the
thermal expansion coefficients turns out to be redundant when compared to others we will
obtain next, so we will not show these here. Also, substituting into
bcP = VAbcPA +vsbcPs+bcPc+ cPAbvA +cPsbvs, and equating to (116) just reproduces (108)­
(110). All information obtainable from the averaging equations alone has been exhausted.

3.2.5. Gassmann laws for the A and B components. In the presence of an applied
temperature change, the micro-confining pressure for Gassmann material A given by
bpcA = (1 - cPA)bPA + cPAbpf is defined

(120)

with an analagous expression for the B component. The Gassmann laws thus take the form
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(121)

(122)

with ana1agous expressions for the B component.
By comparing to the microstructural laws, we see that because the Qs and ys have the

same functional definition as in the welded case, then so do the Ss, Ws, as and XS. The
temperature coefficients of the microstructural laws are defined by

(123)

(124)

with analagous results for the B coefficients.
At this point, just as in the welded case, the only remaining coefficients that must be

determined are Ks and K<jJ (since f3<jJ is assumed known).

3.2.6. Uniform expansion or contraction for partially welded contact. In the presence of
cracks, it is not possible to guarantee that the confining pressure is uniform throughout the
composite porous material (Berryman and Milton, 1992). Therefore, the thought exper­
iment of Berryman and Milton (1991) for welded contact described in the last section is
not valid for this case. The key idea behind the success of that approach was that there
existed a circumstance in which two independently controlled fields could be used to cause
the uniform expansion or contraction of the composite. Having introduced the temperature
field (which is assumed here to be uniform throughout the sample given enough time), we
can again construct a situation wherein the sample expands or contracts uniformly, but
now the two required applied fields are fluid pore pressure and temperature. It is also
necessary to set the changes in external confining pressure equal to those of the fluid
pressure, so that all differential pressure changes vanish.

Supposing that it is possible to have V .uA = V . Us = V .u" we find the corresponding
dilatations are given by

bpf -f3 bT= bpf -f3 bT= bpf -f3*bT= -V'uK
A

A K
s

s K
s

S'
(125)

It follows that these equalities are satisfied if the changes of the fields occur in the ratio

=IlKs -lIKA (= IlKs -IlKs)
f3* - f3 A f3* - f3s '

(126)

(127)

showing that a ratio r does indeed exist and is expressible in terms of known quantities.
Furthermore, we see that Ks has been determined and is related to the known thermal­
expansion coefficients. A similar result has been known in the theory of thermoelasticity
since the work of Levin (1967) and Cribb (1968), but these authors implicitly assumed
welded contact between constituents, and they were not considering porous media.

Changes in fluid pressure and temperature do not induce changes in porosity if the
change in differential pressure vanishes while the composite expands or contracts uniformly.
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Thus, we obtain another valid relation for the uniform expansion or contraction scenario
by setting brP = O. The result is

1 1
-- = ~ + (f3.p - f3*)r
K.p Ks

(128)

and was obtained earlier by Berryman and Milton (1992). With f3.p a known quantity, K.p
is determined by this equation. Thus, the entire system of coefficients has been closed at
this point and our problem is solved.

One might think that all possible identities have not yet been extracted and that, in
particular, f3.p might yet be determined (rather than measured). Not only is the macroscopic
porosity unchanged when bTlbpr = r, but furthermore all of the component porosity chan­
ges vanish (brPA = brPB = brPc = 0), and so do the volume fraction changes
(bvA = bVB = bvc = 0). Ifwe set the left-hand side of (93) equal to (125), we find that

(129)

and a similar expression for BB holds. The result may be written as

(130)

It is easy to check that these expressions satisfy (114), since changing A to Bin (130) only
changes the sign of the right hand side. Also, see Appendix B.

Equation (130) shows that (117) becomes

(131)

which is a general identity for partially welded, nonwelded, or welded contact, and which
may be viewed as another formula relating K.p to f3.p. However, (131) is a linear combination
of (127) and (128) and thus does not provide a separate equation for f3</>. We thus conclude
that all possible information has been extracted from this thought experiment and that
either f3.p or K.p must be measured in order to close the system of coefficients.

3.2.7. The special case of a rubblized bed. In special cases, it may be possible to avoid
the measurement of f3</>. (See also Appendix E.) Consider the extreme case of fully nonwelded
contact. By this term, we mean that we have two porous constituents A and B jumbled
together so that wherever these two types of materials touch there are no constraints
requiring them to remain in contact during a deformation caused by stress or temperature
change. This scenario implies that A and B materials form a "rubblized bed" such that
even some pieces of A material are not welded to other pieces of A material, and similarly
for the B material. This model is special in that results can be obtained for it when only
temperature is changed or when only the pore pressure is changed while differential pressure
is constant.

Consider the situation when a change in temperature occurs in the fully nonwelded or
rubblized material. With no constraints to maintain contact with the surrounding materials,
there should be no feedback between temperature changes and average pressure changes in
the solid. Thus, we expect to find

(132)

Similarly, the changes in solid volume in this situation are controlled simply by the pure
material volume thermal expansion coefficients, so
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(133)

which in tum implies that

(134)

And since Kc= Pc- vcf3* from (113), all the thermal constants are completely determined.
In particular, it follows from (117) that

(135)

showing that the thermal expansion coefficient for the pore space is completely determined
from more easily measured quantities in this special case of fully nonwelded contact.

3.2.8. Summary for partially welded and nonwelded contact. As was done in the welded
case, we now summarize the key results for the case of partially welded and nonwelded
contact. The effective stress laws governing the overall response of a multicomponent
material in the presence of temperature changes are defined by

(136)

(137)

where the effective-stress coefficients rx and Xare algebraically defined as in the welded case.
The thermal expansion moduli f3* and f3q, are assumed known. For the case oftwo Gassmann
materials in partially welded or nonwelded contact, the moduli Ks and Kq, (that are within
rx and X) are defined by

The coefficient

1 1
K = K + r(f3q, - f3*).

q, s

(138)

(139)

(140)

is the special ratio of temperature increment to fluid pressure increment that results in
uniform strain.

The microstructural laws are defined by

(141)

(142)

(143)

(144)

(145)
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with analagous expressions for the B component. The coefficients SA, aA, WA, XA, QA, and
YA and their corresponding B expressions have the exact algebraic definition given already
in the welded case (of course, because Ks and K¢ are different from those in the welded
case, the numerical values of these coefficients will be different in the two cases). The new
coefficients, that are associated with crack openings and the temperature dependence, are
defined by

(146)

(147)

(148)

(149)

(150)

(151 )

(152)

(153)

(154)

Although, in general, /3¢ is assumed to be a known (measured) constant, for the special
case of fully nonwelded contact (a so-called rubblized bed), it takes the special form

(155)

and, thus, need not be measured independently.

4. GENERAL EFFECTIVE STRESS EQUATION FOR MATERIALS WITH WELDED
CONTACT

Welded contact may be treated as a special case of partially welded contact. Everything
in the analysis goes through, but now Ve = oVe = o¢e = 0, and therefore Se = ae = O. Both
thought experiments considered so far apply simultaneously, so we again have (69) and
(70). Thus, we are again in the position of having one egn (70) in two unknowns (i.e., aA

and an).
There is still another legitimate thought experiment for this problem. Since welded

contact implies the possibility of constant confining pressure throughout the sample (Berry­
man and Milton, 1992), we can consider an experiment with oPr = 0, and try to find a ratio
of OPe and oT such that V' uA = V' Un = V' iis . Then, from (89), we have
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bpc _ _ _ bpc _ _ bpc _ * _ ._
K~ f3Ai"JT - K~ f3 BbT - K* f3 bT - V u" (156)

showing that

l/K*-l/K~

f3* - f3A
l/K*-l/K~

f3*- f3B
(157)

These results are completely equivalent to those of Levin (1967) and Cribb (1968), indicating
necessary relations between K* and f3* for welded contact, but those authors were treating
only thermoelastic materials, not thermoporoelastic such as we are treating here.

If we try to carry through the analysis of this thought experiment (even though it is
perfectly legitimate), we wi111earn nothing useful. The reason for this is that the equations
resulting from the three thought experiments are not linearly independent. It is easy to see
that

r
--=1-8.
w

(158)

Thus, we cannot obtain any additional constraints on the coefficients this way. Furthermore,
we find that the region in which SA is constant is actually a plane in the three-dimensional
space of the field variables and that the functional form of SA is

(159)

for welded contact. It is easy to check that this is so by writing out the expressions for bvA

and bvB, and noting that the condition for bvA = - bvB = 0 is the same as the condition for
the argument of (159) to be zero. When the various equalities satisfied by w, 8, and r have
been accounted for, we find for example that

(160)

But, no matter how we choose to write this expression, it always has one parameter
undetermined, and therefore requires one additional measurement.

It is also important to recognize that we have not exhausted the identities. Considering
entropy (which is an extensive quantity), we can obtain another identity in the isothermal
thought experiment. The full matrix equation for the thermoporoelastic problem is

(
be) (l/K*

-b( = -rx/K*

bs f3*

-rx/K*

rx/K* +¢(1/Kr-l/K¢)

¢(f3r- f3</J)

(161)

where the new terms are the change in the entropy bs, and the heat capacities at constant
pressure for the fluid Cr and for the composite frame c~. The ambient temperature is To.
Then, it follows immediately from the isothermal thought experiment with bPc/bpr = 8 that
the change in total entropy is the sum of the changes in the two components, so-making
use of the bottom row of the matrix-we find

(162)

which is a new identity for f3</J that should be compared with the discussion of Appendix B.
This formula is true only for materials subject to welded contact between constituents.
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5. CONCLUSIONS AND DISCUSSIONS

For the case of an isotropic composite of two Gassmann materials (A and B), we have
determined the effective stress laws controlling not only the overall volumetric response but
also the response of the individual A and B components. In addition to the basic properties
of the individual (isolated) A and B materials, we have expressed the laws using only:
(1) the moduli K* and 13* in the case of fully welded or fully nonwelded contact; and
(2) the moduli K*, 13*, and f3q, in the case of partially welded contact. Having such effective
stress laws is key to understanding how the physical properties of the earth's crust vary as
a function of depth.

The present results are limited by assumptions of isotropy for the constituents, stat­
istical isotropy for the overall poroelastic medium, and by the necessity of assuming the
constituents are lumped together as Gassmann materials. Nevertheless, even with these
limitations, the subset of real materials covered by this analysis still includes many inter­
esting materials [such as quartz grains embedded in interstitial clay-see Berryman and
Milton (1991) for a discussion] that cannot be treated by previous methods. We therefore
view the present work as one step toward a more sophisticated analysis that will be required
to treat more general porous media.
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APPENDIX A: VOLUME AVERAGING WITH TWO SOLID CONSTITUENTS

When two solid constituents are present, the averaging theorem gives some significantly different results that
we will present and discuss here. For simplicity, we will limit the discussion to averages of divergence of
displacement and of the displacement itself. We make one assumption implicitly here, that the averaging volume
n is large enough so that statistical differences between the bulk porosity in the volume and the outcrop of porosity
at the surface of the volume are negligible. When this assumption is not made, gradients of porosity appear in the
final equations as is shown in Pride and Berryman (1998).

A.I. Results for all solids
If there are two solids present as in Fig. I, for purposes of averaging we may lump them together and act as

if they are both "solids", using subscript "s" to refer to the regions occupied by these solids. The averaging
theorem (or in this case just the normal divergence theorem) states that

I i I J 1J.(V'u,) = V V'u,dJx = V . D, 'u,dS+ V . n, 'u,dS,
n(x) (,E d

(163)

where 0 is the averaging volume and V = in d 3X , with oE being the external boundary and 01 being the internal
or pore boundary. The divergence of the average (found by taking the Frechet derivative with respect to the
averaging volume) is

I J .V'(u,) =17. n,·u,dS.
?E

(164)

The internal surface integral is easily interpreted as the negative of the change in porosity fJ,p, since the displacement
integrated along the bounding surface produces a volume change that is then normalized by the total volume V
in the averaging volume O(x), so

~J D,'u,dS= -fJ,p.
r:/

(165)

The left-hand side of (163) is also easily interpreted as the total change in solid volume fJ[V(I-,p)] divided by the
averaging volume V. Comparing these expressions shows that

fJV
V'(u,) =(1-,p)V' (166)

Note that there has been no change in the averaging volume n, but there has been movement of solid in or out of
volume and/or a change in state of compression of the solid. In this regard, our notation is trying to reflect the
fact that experimentally we normally start with a fixed volume of material V and then measure changes fJ V in that
volume.

Accounting for the volume occupied by the solid initially, we have (u,) == (1- ,p)ii" so

(167)

We normally neglect the second term on the right-hand side of (167), since we assume that the scales of variation
of the displacement field are much smaller than those for the porosity, so that 10, . V,p I « IV. 0,1. However, a fully
general analysis must account for the presence of this term [see Pride and Berryman (1998)].

A.2. Results for constituents A and B with welded contact
When we want to distinguish the constituent solids A and B as in Fig. I, we can break up the averaging

volume into two pieces such that
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<V'u,) = <V'uA)+<V'UB), (168)

which follows immediately from the fact that material A and B occupy disjoint parts of the averaging volume.
The averaging theorem for the divergence ofuA alone then states that

(169)

where we have explicitly noted that the interior interface has two parts: one boundary aI, with the fluid (or pore
space) and one alB with the other solid (B).

Since

(170)

and a similar expression for V . UB' we find easily from the identity

(171)

that

(172)

In order to specify the physical significance of V' <UA), we need to repeat the analysis for all solids, taking
into account the fact that when there are two or more solids there must also be additional interior interfaces
between these various constituents. Of the four terms in (169), each requires some interpretation. First, the left­
hand side has an interpretation similar to that of the left-hand side of (163). Thus, we have the volume average
of the dilatation of A material must be

<V. )=O[VA(I-cPA)]
UA V' (173)

where VA is the total porous volume of A material and V.4(1- cPA) is the total solid volume of A material.
The two integrals on the right-hand side of (169) are more difficult to interpret because they involve the

contact region of two Gassmann materials having possibly different porosities. (See Fig. 2.) Statistically the A
material should have solid material at this interface occupying the fraction 1- cPA of the total interface area and
A-pore the remaining fraction cP A ofthe total. The B material has corresponding proportions. Now these continuous
surfaces may be statistically correlated or uncorrelated. If they are uncorrelated, we can easily compute the
coefficients we will need. But if they are correlated, we introduce new interface constants with the following
properties: 'lAB = '1BA is the fraction of the interface on which solid A touches solid B, 'lA' is the fraction of the
interface on which solid A touches the fluid in B, and similarly '1B' is the fraction on which the solid B touches the
fluid in A. With our assumption of statistical homogeneity, these constants should obey the general sum rules
'1AB+'1" = I-cPA and '1BA+'1B' = l-cPB' One immediate general result is that the difference '1,,-'1Bf= cPB-cPA'
The solid/solid contact area should be proportional to 'lAB, which may be very small or it can be as large as the
minimum of the two solid fractions (1- cPA), (1- cPB)' For uncorrelated surfaces, we expect 'lAB = (1 - cPA)(I- cPB)'

Fig. 2. At an internal interface between Gassmann porous materials A and B, there will be regions
where fluid from the A side interfaces with fluid from the B side, where fluid from the A side
interfaces with solid from the B side, where solid from the A side interfaces with fluid from the B
side, and where solids from both sides touch (not seen in this particular blowup of a two-dimensional

cross section of a three-dimensional medium).
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"IAf = (1- ¢ A)¢B, and "IBf = (1- rPB)rPA- These identities are easily shown to satisfy the statistical sum rules for these
coefficients. For correlated interfaces, we may view "lAB as a new microstructural parameter that characterizes the
internal (to the averaging volume) solid/solid interface.

The first integral on the right-hand side of (169) is the surface integral of displacement along the fluid
boundary. This tenn has the same significance as the corresponding one for the whole solid; it is the change in
porosity associated with type-A material. The total pore volume associated with A is VArPA, so the change in pore
volume must be a change in this quantity. However, the surface integral is strictly over the original boundary of
the A material (prior to the displacements uA ), so the correct expression for this change in the absence of other
solids is clearly V4~rPA' But, in the presence of other solids, we must account for the possibility of changes in
overall porosity due to changes in volume fraction. Thus, the full contribution of this term is

f.DA·uAdS= -VA~rPA+V"IAf~VA'
ilil

(174)

using one of the interface constants introduced in the preceding paragraph. When the volume fraction does not
change, as in the case when the averaging volume happens to contain only A material, we see that this expression
reduces correctly to (165). When we write the corresponding relation for the B phase and then consider that by
definition it must be true that

(175)

we see that the extra tenns proportional to change in volume fraction are exactly what were needed to guarantee
that (175) is equivalent to ~rP = VA 15¢A+VB15rPB+(rPA-rPB)15VA.

The second integral on the right-hand side of (169) is the surface integral over the AB solid/solid interface.
This term also has the important characteristic that it must be exactly the negative of the corresponding tenn for
the B material. So however we interpret it, the expression should be easily identified by the fact that interchanging
A and B should change the sign of the term. We make the identification

(176)

where 15vA is the change in volume fraction of porous constituent A. This interpretation is reasonable: if a fictitious
continuous surface is drawn between the porous constituents and the corresponding surface integral taken, then
the result would be exactly ~vA' Since the true AB interface occupies only a fraction "lAB of this total interface area,
we see that (176) follows.

The remaining term in (169) needing interpretation is proportional to the surface integral of the A component
displacement. Combining the previous results, this average must be given by

(177)

with a matching expression for the B phase. That these two integrals must satisfy the sum rule in (171) together
with (166) implies that their sum must be equal to (I-¢)15V which is easily seen to be true (since VA +VB = I and
VArPA+VB¢B = rP) for the case of welded contact.

Comparing all these expressions, we finally determine that

(178)

which is the desired expression for divergence of the average displacement of A.
Although the divergence of <uA ) is given rigorously by (178), the quantities that actually appear in the

quasistatic equations of motion are simply the dilatations of the constituents, so we will define a new quantity fiA

satisfying

(179)

which is related to fiA by

(180)

where the change in volume fraction is itself related to fiA and the corresponding expression of B by
15vA = VAVB(V' fiA- V' fiB)' These definitions and interrelations will be important for analysis of wave propagation
issues for multicomponent rocks.
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APPENDIX B: PRESSURE COEFFICIENT IDENTITY

B.I. Welded contact
Using the results from the uniform expansion/contraction thought experiment for confining and fluid pressure

changes under isothermal conditions, we can obtain a somewhat simplified expression for the combination of
constants [see (44) and (45)]

(181)

First recall the identities [see (65) or Berryman and Milton (1991)]

(182)

and

(183)

By volume averaging the two expressions in (182), we obtain the intermediate result that

(184)

Then, subtracting (183) from (184), we obtain

(185)

Substituting (185) into (181) produces the useful identity

(186)

together with a corresponding result for the B component.

B.2. Partially welded contact
Using the results from the uniform expansion/contraction thought experiment for temperature and pressure

changes at zero differential pressure change, we can also obtain a different simplified expression for the combination
of constants in (181). First, recall [see (127) or Berryman and Milton (1992)] that

and that

I I 1
K = Y +r(fJ*-fJA) = y +r(fJ*-fJB)'

, A B

(187)

(188)

The constant r may be determined by solving for it in the second equation of (187). The second equality in eqn
(188) follows by substituting for K, from (187).

From these equalities, it is straightforward to obtain

(189)

Combining these results with the definition of r and substituting into (181) produces the final result

(190)

The corresponding result with A +-+ B also holds. Equation (190) should also be compared to (186).

APPENDIX C: SPECIAL EXAMPLE FOR WELDED CONTACT

In a few cases the algebra for these calculations simplifies. One particularly interesting and easy case assumes
that one of the constituents (say B) is purely solid, i.e., tPB = 0 initially and remains so (fJtPB = 0). Then, the
number of equations that must be solved is dramatically reduced. In particular, we know from the outset that
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K; = K B • As long as the other constituent's porosity remains connected, this example is still a valid limit of the
equations and has already been considered by Berryman and Milton (199l).

Following the analysis of Section 3.1, it is easily shown that the ratio of confining pressure to pore pressure
that gives rise to uniform expansion or contraction is

i5p, = e = I/K~-I/KA

i5pr I/K~-I/Ks'

We also find easily that

and that

Substituting these results into (48) and (49), we obtain

1 K 4 (I I)
VASA = K* - K -K K - K '

A B s A

and

(191 )

(192)

(193)

(194)

(195)

For porosity variations, WB = 0 and XB is arbitrary (and therefore may be taken as zero), while WA and XA

are determined by (50) and (51), respectively.
Including the effects of thermal expansion in this model, we fid that the microstructural constants for thermal

expansion take the form

(196)

and

(197)

which correctly satisfy the constraint vAPA+VsPs = {3*.

APPENDIX D: EFFECTIVE STRESS RULES FOR MICROSTRUCTURAL PARAMETERS

An implicit assumption in the analysis of welded contact is that during the uniform expansion/contraction
experiment the coefficients of the equations for the material dilatations are invariant. So we have

(198)

where SA and iXA are constant along the line i5p, = ei5Pr, corresponding to uniform expansion or contraction. A
similar result holds for the B material. If we want to consider possible deviations from linearity in the overall
analysis, we need to maintain the constancy of these coefficients along this line but can suppose that they have
i5p" i5Pr dependence of the form

where eis a constant. Thus, we are introducing an effective stress rule for these coefficients.
Now it will be useful to consider an integrability condition arising from the fact that

s = _ aln V,4!
A - a .Pc 6Pf=O

and that

(199)

(200)
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_ aln VA I
aASA ;'-0-- ..

'Pr oP,~O
(201)

It follows that the cross derivatives must be equal, so

this being the standard condition for integrability of such equations.
Using the effective stress rule (199), we find from the chain rule that

It then follows easily from (202) that

which may be rewritten as

This form of the result shows that

(202)

(203)

(204)

(205)

(206)

which should be compared to the welded contact result (69): SA = (fJ-a)/K*(fJ-Ii.A). Using effective stress
arguments, it is not hard to show that the factor (fJ-a)/K* is indeed a constant as Dpc varies, as was done
previously by Berryman (1992).

APPENDIX E: SPECIAL EXAMPLE FOR PARTIALLY WELDED CONTACT

There exists one example of partially welded contact in which the equations can be completely solved. We
consider a granular composite, having two types of solid, nonporous grains labeled A and B. The entire pore
phase C consists of the gaps and misfits between and among the grains of both types. The pore phase must be
continuous (connected) in order for pore pressure to equilibrate. This model is included in the analysis of the
partially welded porous composite by taking the porosities rPo4 = rPJJ = 0, and assuming that DrPo4 = DrPJJ = 0 for
any state of temperature and stress achieved. The frame moduli satisfy K~ = Ko4 and K~ = KB •

For partially welded contact, it is anticipated that the local average pressures experienced by the grains may
be influenced by both the confining pressure and the pore pressure. Therefore, we make no assumptions about
the values of the as and ys.

The values of the coefficients Q and '1 are as always given by (44) and (45). Since changes in porosity for
constituents A and B cannot occur in this model, Wo4 = WJJ = 0, so

and

S _ Qo4
04- K, (207)

(208)

and similarly for the B grains. Using (108), we find

while (109) shows that

(209)

follows from (109).

(210)
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The thermal expansion for the A grains is given by

(211)

and a similar expression for the B grains [see (197), which happens to be of the same form). The thermal expansion
for the pores then becomes

- I [<P vc ]Pc = vcP*+ ~ K¢ - l(, .

These formulas also satisfy the constraint VAPA +vnPn+ Pc = P*

(212)


